Advertisements
Advertisements
प्रश्न
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
पर्याय
`sqrt(tantheta`
`sqrt(cottheta)`
tan θ
cot θ
उत्तर
(a) `sqrt(tantheta`
Let \[y = \sqrt{\tan\theta}\]
Then,
\[u = \cot^{- 1} \sqrt{\tan\theta} - \tan^{- 1} \sqrt{\tan\theta}\]
\[ \Rightarrow u = \cot^{- 1} y - \tan^{- 1} y\]
\[ \Rightarrow u = \frac{\pi}{2} - 2 \tan^{- 1} y \left[ \because \tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 2 \tan^{- 1} y = \frac{\pi}{2} - u \]
\[ \Rightarrow \tan^{- 1} y = \frac{\pi}{4} - \frac{u}{2}\]
\[ \Rightarrow y = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right)\]
\[ \Rightarrow \sqrt{\tan\theta} = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) \left[ \because y = \sqrt{\tan\theta} \right]\]
\[\]
APPEARS IN
संबंधित प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin pi/6)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`sec{cot^-1(-5/12)}`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .