मराठी

If U = Cot − 1 √ Tan θ − Tan − 1 √ Tan θ Then , Tan ( π 4 − U 2 ) = (A) √ Tan θ (B) √ Cot θ (C) Tan θ (D) Cot θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]

पर्याय

  • `sqrt(tantheta`

  • `sqrt(cottheta)`

  •  tan θ

  • cot θ

MCQ

उत्तर

(a) `sqrt(tantheta`
Let \[y = \sqrt{\tan\theta}\]
Then, 
\[u = \cot^{- 1} \sqrt{\tan\theta} - \tan^{- 1} \sqrt{\tan\theta}\]
\[ \Rightarrow u = \cot^{- 1} y - \tan^{- 1} y\]
\[ \Rightarrow u = \frac{\pi}{2} - 2 \tan^{- 1} y \left[ \because \tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 2 \tan^{- 1} y = \frac{\pi}{2} - u \]
\[ \Rightarrow \tan^{- 1} y = \frac{\pi}{4} - \frac{u}{2}\]
\[ \Rightarrow y = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right)\]
\[ \Rightarrow \sqrt{\tan\theta} = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) \left[ \because y = \sqrt{\tan\theta} \right]\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 12 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sec{cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×