Advertisements
Advertisements
प्रश्न
`sin^-1 4/5+2tan^-1 1/3=pi/2`
उत्तर
LHS = `sin^-1 4/5+2tan^-1 1/3`
`=sin^-1 4/5+tan^-1{(2xx1/3)/(1-(1/3)^2)}` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}`
`=sin^-1 4/5+tan^-1{(2/3)/(8/9)}`
`=sin^-1 4/5+tan^-1 3/4`
`=sin^-1 4/5+cos^-1 1/(sqrt(1+9/16)` `[becausetan^-1x=cos^-1 1/sqrt(1+x^2)]`
`=sin^-1 4/5+cos^-1 1/(5/4)`
`=sin^-1 4/5+cos^-1 4/5`
`=pi/2=`RHS
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cos(tan^-1 3/4)`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`