मराठी

For Any A, B, X, Y > 0, Prove That: `2/3tan^-1((3ab^2-a^3)/(B^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(Y^3-3x^2y))=Tan^-1 (2alphabeta)/(Alpha^2-beta^2)` `Where Alpha =-ax+By, Beta=Bx+Ay` - Mathematics

Advertisements
Advertisements

प्रश्न

For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`

उत्तर

Let `a = btan m  and  x = ytan  n`

Then,

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=2/3tan^-1((3b^3tanm-b^3tan^3m)/(b^3-3b^3tan^2m))+2/3tan^-1((3y^3tann-y^3tan^3n)/(y^3-3y^3tan^2n))`

`=2/3tan^-1((3tanm-tan^3m)/(1-3tan^2m))+2/3tan^-1((3tann-tan^3n)/(1-3tan^2n))`

`=2/3tan^-1(tan3m)+2/3tan^-1(tan3n)`      `[because tan3x=(3tanx-tan^3x)/(1-3tan^2x)]`

`=2/3(3m)+2/3(3n)`

`=2m+2n`

`=2(tan^-1  a/b+tan^-1  x/y)`       `[because a=btanm, x=ytann]`

`=2tan^-1((a/b+x/y)/(1-a/b x/y))`

`=2tan^-1((ay+bx)/(by-ax))`

`=tan^-1{(2(ay+bx)/(by-ax))/(1-((ay+bx)/(by-ax))^2)}`

`=tan^-1{(2(ay+bx)(by-ax))/((by-ax)^2-(ay+bx)^2)}`

`=tan^-1{(2alphabeta)/(alpha^2-beta^2)}`      `[becausealpha=ay+bxandalpha=by-ax]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 11 | पृष्ठ ११६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos{sin^-1(-7/25)}`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of `sin^-1(-1/2)`


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If sin−1 − cos−1 x = `pi/6` , then x = 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×