Advertisements
Advertisements
प्रश्न
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
उत्तर
Let `a = btan m and x = ytan n`
Then,
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=2/3tan^-1((3b^3tanm-b^3tan^3m)/(b^3-3b^3tan^2m))+2/3tan^-1((3y^3tann-y^3tan^3n)/(y^3-3y^3tan^2n))`
`=2/3tan^-1((3tanm-tan^3m)/(1-3tan^2m))+2/3tan^-1((3tann-tan^3n)/(1-3tan^2n))`
`=2/3tan^-1(tan3m)+2/3tan^-1(tan3n)` `[because tan3x=(3tanx-tan^3x)/(1-3tan^2x)]`
`=2/3(3m)+2/3(3n)`
`=2m+2n`
`=2(tan^-1 a/b+tan^-1 x/y)` `[because a=btanm, x=ytann]`
`=2tan^-1((a/b+x/y)/(1-a/b x/y))`
`=2tan^-1((ay+bx)/(by-ax))`
`=tan^-1{(2(ay+bx)/(by-ax))/(1-((ay+bx)/(by-ax))^2)}`
`=tan^-1{(2(ay+bx)(by-ax))/((by-ax)^2-(ay+bx)^2)}`
`=tan^-1{(2alphabeta)/(alpha^2-beta^2)}` `[becausealpha=ay+bxandalpha=by-ax]`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos{sin^-1(-7/25)}`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If sin−1 x − cos−1 x = `pi/6` , then x =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the value of `sin^-1(cos((33π)/5))`.