Advertisements
Advertisements
प्रश्न
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
पर्याय
e5π/18
e13π/18
e−2π/18
none of these
उत्तर
(b) e13π/18
Given: \[f\left( x \right) = e^{\cos^{- 1}} \left\{ \sin\left( x + \frac{\pi}{3} \right) \right\}\]
Then,
\[f\left( \frac{8\pi}{9} \right) = e^{\cos^{- 1}} \left\{ \sin\left( \frac{8\pi}{9} + \frac{\pi}{3} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \sin\left( \frac{11\pi}{9} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{\pi}{2} + \frac{13\pi}{18} \right) \right\} \left[ \because \cos\left( \frac{\pi}{2} + \theta \right) = \sin\theta \right]\]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{13\pi}{18} \right) \right\} \]
\[ = e^\frac{13\pi}{18}\]
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos{sin^-1(-7/25)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`