Advertisements
Advertisements
प्रश्न
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
उत्तर
We know
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
x < 0, y < 0 such that
xy = 1
Let x = -a and y = -b where both a and b are positive.
\[\therefore \tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[ = \tan^{- 1} \left( \frac{- a - a}{1 - 1} \right)\]
\[ = \tan^{- 1} \left( - \infty \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{2} \right) \right\}\]
\[ = - \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos(tan^-1 3/4)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of sin (cot−1 x).
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
The period of the function f(x) = tan3x is ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`