मराठी

If X < 0, Y < 0 Such that Xy = 1, Then Write the Value of Tan−1 X + Tan−1 Y. - Mathematics

Advertisements
Advertisements

प्रश्न

If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.

उत्तर

We know
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
x < 0, y < 0   such that 
xy = 1
Let x = -a and y = -b where both a and b are positive.
\[\therefore \tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[ = \tan^{- 1} \left( \frac{- a - a}{1 - 1} \right)\]
\[ = \tan^{- 1} \left( - \infty \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{2} \right) \right\}\]
\[ = - \frac{\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 37 | पृष्ठ ११८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos(tan^-1  3/4)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of sin (cot−1 x).


Write the value of sin1 (sin 1550°).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


The period of the function f(x) = tan3x is ____________.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×