मराठी

Prove the Following Result: `Tan^-1 1/4+Tan^-1 2/9=Sin^-1 1/Sqrt5` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`

उत्तर

LHS = `tan^-1  1/4+tan^-1  2/9`

`=tan^-1((1/4+2/9)/(1-1/4xx2/9))`     `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`

`=tan^-1((17/36)/(34/36))`

`=tan^-1  1/2`

`=sin^-1  (1/2)/sqrt(1+(1/2)^2)`

`=sin^-1  1/5=`RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 1.3 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


tanx is periodic with period ____________.


The period of the function f(x) = tan3x is ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×