मराठी

Write the Value of Cos ( Sin − 1 X + Cos − 1 X ) , | X | ≤ 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]

उत्तर

We have
\[\left| x \right| \leq 1\]
\[ \Rightarrow \pm x \leq 1\]
\[ \Rightarrow x \leq 1 or - x \leq 1\]
\[ \Rightarrow x \leq 1 or x \geq - 1\]
\[ \Rightarrow x \in \left[ - 1, 1 \right]\]
Now,
\[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right) = \cos\left( \frac{\pi}{2} \right) \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 49 | पृष्ठ ११८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the domain of `sec^(-1)(3x-1)`.


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×