Advertisements
Advertisements
प्रश्न
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
उत्तर
Applying parametric differentiation \[\frac{dx}{d\theta}\] =2a − 2acos2 \[\theta\] \[\frac{dy}{d\theta}\] = 0 + 2asin2 \[\theta\] \[\frac{dy}{dx}\] = \[\frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{\sin2\theta}{1 - \cos2\theta}\] Now putting the value of \[\theta\] = \[\frac{\pi}{3}\]
\[\frac{dy}{dx}_\theta = \frac{\pi}{3} = \frac{\sin2\left( \frac{\pi}{3} \right)}{1 - \cos2\left( \frac{\pi}{3} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{1}{\sqrt{3}}\]
So,
\[\frac{dy}{dx}\] \[\frac{1}{\sqrt{3}}\] at \[\theta = \frac{\pi}{3}\] .
APPEARS IN
संबंधित प्रश्न
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The value of sin `["cos"^-1 (7/25)]` is ____________.