मराठी

If X = a (2θ – Sin 2θ) and Y = a (1 – Cos 2θ), Find D Y D X When θ = π 3 . - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .

उत्तर

Applying parametric differentiation \[\frac{dx}{d\theta}\] =2a − 2acos2 \[\theta\] \[\frac{dy}{d\theta}\] = 0 + 2asin2 \[\theta\] \[\frac{dy}{dx}\] = \[\frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{\sin2\theta}{1 - \cos2\theta}\] Now putting the value of  \[\theta\] =  \[\frac{\pi}{3}\]

\[\frac{dy}{dx}_\theta = \frac{\pi}{3} = \frac{\sin2\left( \frac{\pi}{3} \right)}{1 - \cos2\left( \frac{\pi}{3} \right)}\]

\[ = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}\]

\[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{1}{\sqrt{3}}\]

So,

\[\frac{dy}{dx}\] \[\frac{1}{\sqrt{3}}\] at  \[\theta = \frac{\pi}{3}\] . 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) All India Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×