Advertisements
Advertisements
प्रश्न
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
उत्तर
`sin^-1x+sin^-1y+sin^-1z=(3pi)/2`
`=>sin^-1x+sin^-1y+sin^-1z=pi/2+pi/2+pi/2` [As the maximum value in the range of `sin^-1x is pi/2` And here sum of three inverse of sine is 3 times `pi/2`. i.e., every sin inverse function is equal to `pi/2` here.]
`=>sin^-1x=pi/2,sin^-1y=pi/2andsin^-1z=pi/2`
`=>x=1,y=1andx=1`
`thereforex+y+z=1+1+1=3`
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(sec^-1 17/8)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
tanx is periodic with period ____________.