मराठी

The Value of Tan ( Cos − 1 3 5 + Tan − 1 1 4 ) (A) 19 8 (B) 8 19 (C) 19 12 (D) 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 

पर्याय

  • `19/8`

  • `8/19`

  • `19/12`

  • `3/4`

MCQ

उत्तर

\[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right) = \tan\left( \tan^{- 1} \frac{\sqrt{1 - \frac{9}{25}}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{5}}{\frac{3}{5}} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{4}{3} + \tan^{- 1} \frac{1}{4} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{1}{3}} \right)\]
\[ = \frac{\frac{16 + 3}{12}}{\frac{2}{3}}\]
\[ = \frac{19}{8}\]

Hence, the correct answer is option (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 35 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


`sin(sin^-1  1/5+cos^-1x)=1`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the range of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos−1 (cos 6).


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×