Advertisements
Advertisements
प्रश्न
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
उत्तर
The maximum value of `sin^-1x` in x ∈ [− 1, 1] is at 1.
So, the maximum value is
`sin^-1(1)`
`=sin^-1(sin pi/2)`
`=pi/2`
Again, the minimum value is at -1.
Thus, the minimum value is
`sin^-1(-1)=-sin^-1(1)`
`=-sin^-1(pi/2)`
`=-pi/2`
So, the difference between the maximum and the minimum value is `pi/2-(-pi/2)=pi`
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos3)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 (sin 1550°).
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 6).
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .