मराठी

It Tan − 1 X + 1 X − 1 + Tan − 1 X − 1 X = Tan − 1 (−7), Then the Value of X is (A) 0 (B) −2 (C) 1 (D) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 

पर्याय

  • 0

  • −2

  • 1

  • 2

MCQ

उत्तर

(d) 2

We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} \left( \frac{x + 1}{x - 1} \right) + \tan^{- 1} \left( \frac{x - 1}{x} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x + 1}{x - 1} + \frac{x - 1}{x}}{1 - \frac{x + 1}{x - 1} \times \frac{x - 1}{x}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x^2 + x + x^2 - 2x + 1}{x\left( x - 1 \right)}}{\frac{x^2 - x - x^2 + 1}{x\left( x - 1 \right)}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 x^2 - x + 1}{- x + 1} \right) = \tan^{- 1} \left( - 7 \right)\]
So, we get
\[\frac{2 x^2 - x + 1}{- x + 1} = - 7\]
\[ \Rightarrow 2 x^2 - x + 1 = 7x - 7\]
\[ \Rightarrow 2 x^2 - 8x + 8 = 0\]
\[ \Rightarrow x^2 - 4x + 4 = 0\]
\[ \Rightarrow \left( x - 2 \right)^2 = 0\]
\[ \Rightarrow x = 2\]


shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 25 | पृष्ठ १२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of sin (cot−1 x).


Write the value of cos−1 (cos 1540°).


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If 4 cos−1 x + sin−1 x = π, then the value of x is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×