Advertisements
Advertisements
प्रश्न
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
पर्याय
0
−2
1
2
उत्तर
(d) 2
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} \left( \frac{x + 1}{x - 1} \right) + \tan^{- 1} \left( \frac{x - 1}{x} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x + 1}{x - 1} + \frac{x - 1}{x}}{1 - \frac{x + 1}{x - 1} \times \frac{x - 1}{x}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{\frac{x^2 + x + x^2 - 2x + 1}{x\left( x - 1 \right)}}{\frac{x^2 - x - x^2 + 1}{x\left( x - 1 \right)}} \right) = \tan^{- 1} \left( - 7 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 x^2 - x + 1}{- x + 1} \right) = \tan^{- 1} \left( - 7 \right)\]
So, we get
\[\frac{2 x^2 - x + 1}{- x + 1} = - 7\]
\[ \Rightarrow 2 x^2 - x + 1 = 7x - 7\]
\[ \Rightarrow 2 x^2 - 8x + 8 = 0\]
\[ \Rightarrow x^2 - 4x + 4 = 0\]
\[ \Rightarrow \left( x - 2 \right)^2 = 0\]
\[ \Rightarrow x = 2\]
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If 4 cos−1 x + sin−1 x = π, then the value of x is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`