मराठी

Prove that : Cot − 1 √ 1 + Sin X + √ 1 − Sin X √ 1 + Sin X − √ 1 − Sin X = X 2 , 0 < X < π 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .

उत्तर

\[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\]

\[ = \cot^{- 1} \left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}} \right\}\]

\[\left[ \because \left( \cos\frac{x}{2} \pm \sin\frac{x}{2} \right)^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \pm 2\sin\frac{x}{2}\cos\frac{x}{2} = 1 \pm \sin x \right]\]

\[ = \cot^{- 1} \left\{ \frac{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| + \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|}{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| - \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|} \right\} \]

\[ = \cot^{- 1} \left\{ \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) + \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)} \right\} \left[ \because 0 < \frac{x}{2} < \frac{\pi}{4} \therefore \cos\frac{x}{2} > \sin\frac{x}{2} \right]\]

\[ = \cot^{- 1} \left( \cot\frac{x}{2} \right)\]

\[ = \frac{x}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


tanx is periodic with period ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×