Advertisements
Advertisements
Question
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Solution
\[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\]
\[ = \cot^{- 1} \left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}} \right\}\]
\[\left[ \because \left( \cos\frac{x}{2} \pm \sin\frac{x}{2} \right)^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \pm 2\sin\frac{x}{2}\cos\frac{x}{2} = 1 \pm \sin x \right]\]
\[ = \cot^{- 1} \left\{ \frac{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| + \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|}{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| - \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|} \right\} \]
\[ = \cot^{- 1} \left\{ \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) + \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)} \right\} \left[ \because 0 < \frac{x}{2} < \frac{\pi}{4} \therefore \cos\frac{x}{2} > \sin\frac{x}{2} \right]\]
\[ = \cot^{- 1} \left( \cot\frac{x}{2} \right)\]
\[ = \frac{x}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin pi/6)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the range of tan−1 x.
Write the value of sin−1 (sin 1550°).
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If sin−1 x − cos−1 x = `pi/6` , then x =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1) x-tan^(-1)x`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.