English

Prove that : Cot − 1 √ 1 + Sin X + √ 1 − Sin X √ 1 + Sin X − √ 1 − Sin X = X 2 , 0 < X < π 2 . - Mathematics

Advertisements
Advertisements

Question

Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .

Solution

\[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\]

\[ = \cot^{- 1} \left\{ \frac{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} + \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{\sqrt{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^2} - \sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}} \right\}\]

\[\left[ \because \left( \cos\frac{x}{2} \pm \sin\frac{x}{2} \right)^2 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \pm 2\sin\frac{x}{2}\cos\frac{x}{2} = 1 \pm \sin x \right]\]

\[ = \cot^{- 1} \left\{ \frac{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| + \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|}{\left| \cos\frac{x}{2} + \sin\frac{x}{2} \right| - \left| \cos\frac{x}{2} - \sin\frac{x}{2} \right|} \right\} \]

\[ = \cot^{- 1} \left\{ \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) + \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)} \right\} \left[ \because 0 < \frac{x}{2} < \frac{\pi}{4} \therefore \cos\frac{x}{2} > \sin\frac{x}{2} \right]\]

\[ = \cot^{- 1} \left( \cot\frac{x}{2} \right)\]

\[ = \frac{x}{2}\]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the range of tan−1 x.


Write the value of sin1 (sin 1550°).


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1) x-tan^(-1)x`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×