English

Let, X Denote the Number of Colleges Where You Will Apply After Your Results and P(X = X) Denotes Your Probability of Getting Admission in X Number of Colleges. It is Given that - Mathematics

Advertisements
Advertisements

Question

Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.

Solution

The probability distribution of X is

X 0 1 2 3 4
P(X) 0 k 4k 2k k

The given distribution is a probability distribution.

\[\therefore \sum_{} p_i = 1\]

⇒ 0 + k + 4k + 2k + k = 1
⇒8k = 1
⇒ k = 0.125

(i) P(getting admission in exactly one college) = P(X = 1) = = 0.125
(ii) P(getting admission in at most 2 colleges) = P( X ≤ 2) = 0 + k + 4k = 5k = 0.625
(iii) P(getting admission in atleast 2 colleges) = P( X ≥ 2) = 4k + 2k + k = 7k = 0.875

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.                         


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


A fair coin is tossed four times. Let X denote the number of heads occurring. Find the probability distribution, mean and variance of X.


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .  


If a random variable X has the following probability distribution:

X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

then the value of a is


A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


A random variable has the following probability distribution:

X = xi : 0 1 2 3 4 5 6 7
P (X = xi) : 0 2 p 2 p  3 p  p2 p2 p2 2 p 

The value of p is


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3. 


A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


If X ∼ N (4,25), then find P(x ≤ 4)


Solve the following problem :

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is positive.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on exactly 3 days of a week.


A random variable X has the following probability distribution

X 2 3 4
P(x) 0.3 0.4 0.3

Then the variance of this distribution is


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×