Advertisements
Advertisements
Question
A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.
Solution
Let X denote the number of red balls in a sample of 3 balls drawn from a bag containing 4 red and 6 black balls. Then, X can take the values 0, 1, 2 and 3.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no red ball } \right)\]
\[ = \frac{{}^6 C_3}{{}^{10} C_3}\]
\[ = \frac{20}{120}\]
\[ = \frac{1}{6}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ red ball } \right)\]
\[ = \frac{{}^4 C_1 \times^6 C_2}{{}^{10} C_3}\]
\[ = \frac{60}{120}\]
\[ = \frac{1}{2}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ red balls } \right)\]
\[ = \frac{{}^4 C_2 \times^6 C_1}{{}^{10} C_3}\]
\[ = \frac{36}{120}\]
\[ = \frac{3}{10}\]
\[P\left( X = 3 \right)\]
\[ = P\left( 3 \text { red balls } \right)\]
\[ = \frac{{}^4 C_3}{{}^{10} C_3}\]
\[ = \frac{4}{120}\]
\[ = \frac{1}{30}\]
Thus, the probability distribution of X is given by
x | P(X) |
0 |
\[\frac{1}{6}\]
|
1 |
\[\frac{1}{2}\]
|
2 |
\[\frac{3}{10}\]
|
3 |
\[\frac{1}{30}\]
|
APPEARS IN
RELATED QUESTIONS
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
A random variable X has the following probability distribution:
Values of X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.
From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Find P(X ≤ 2) + P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.
A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.
Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
If a random variable X has the following probability distribution:
X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
then the value of a is
Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-
(a) No defects
(b) At least one defect
[Use e-1 = 0.3678]
The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that :
(a) exactly two will strike the target,
(b) at least one will strike the target.
A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -
(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.1 | 0.6 | 0.3 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect
Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:
- no defect
- at least one defect
Use e−1 = 0.3678
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.
Solve the following problem :
A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Calculate `"V"("X"/2)`
Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.