English

A Card is Drawn at Random and Replaced Four Times from a Well Shuftled Pack of 52 Cards. Find the Probability that - - Mathematics and Statistics

Advertisements
Advertisements

Question

A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.

Sum

Solution

Let a random variable
X = number of diamond cards.

Here X follows Binomial distribution n = 4.

P = P(success) = `13/52 = 1/4`
q = 1 - p 
   = 1 - `1/4 = 3/4` 

X - B `(4, 1/4)` 
`therefore` p.m.f is 
P(X = x) =  `""^n"C"_xp^xq^(n-x)`

     P(X = x) = `""^4"C"_x (1/4)^x (3/4)^(4 -x)`

(a) P (Two diamonds cards are drawn)

= P(X = 2)

= `""^4"C"_2 (1/4)^2 (3/4)^(4-2)`

= `(4 xx 3)/(2 xx 1) xx 1/16 xx 9/16`

= `27/128`

= 0.2109

(b) P (at least one diamond card drawn) 

= 1 - (X = 0)

=  1 - `""^4"C"_0 (1/4)^0 (3/4)^(4 -0)`

= `0- (3/4)^4 = 1 - 81/256`

= `175/256` = 0.6835

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

RELATED QUESTIONS

A random variable X has the following probability distribution:

then E(X)=....................


State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 -0.1 0.3

A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


The random variable X has probability distribution P(X) of the following form, where k is some number:

`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`

  1. Determine the value of 'k'.
  2. Find P(X < 2), P(X ≥ 2), P(X ≤ 2).

Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.      


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes. 


For the following probability density function (p. d. f) of X, find P(X < 1) and P(|x| < 1) 

`f(x) = x^2/18, -3 < x < 3`

            = 0,             otherwise


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2 3 4
P(x) 0.1 0.5 0.2 –0.1 0.3

A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.


10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?


Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:

  1. no defect
  2. at least one defect
    Use e−1 = 0.3678

State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


For the following probability distribution:

X 1 2 3 4
P(X) `1/10` `3/10` `3/10` `2/5`

E(X2) is equal to ______.


Find the mean of number randomly selected from 1 to 15.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×