Advertisements
Advertisements
Question
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
Solution
Given that: X = 0, 1, 2
And P(X) at X = 0 and 1 is p.
Let P(X) at X = 2 is x
⇒ p + p + x = 1
⇒ x = 1 – 2p
Now we have the following distributions.
X | 0 | 1 | 2 |
P(X) | p | p | 1 – 2p |
∴ E(X) = 0.p + 1.p + 2(1 – 2p)
= p + 2 – 4p
= 2 – 3p
And E(X2) = 0.p + 1.p + 4(1 – 2p)
= p + 4 – 8p
= 4 – 7p
Given that: E(X2) = E(X)
∴ 4 – 7p = 2 – 3p
⇒ 4p = 2
⇒ p = `1/2`
Hence, the required value of p is `1/2`.
APPEARS IN
RELATED QUESTIONS
Probability distribution of X is given by
X = x | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | 0.3 | 0.4 | 0.2 |
Find P(X ≥ 2) and obtain cumulative distribution function of X
Find the probability distribution of number of heads in two tosses of a coin.
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is
(A) `37/221`
(B) 5/13
(C) 1/13
(D) 2/13
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
Find the probability distribution of the number of heads, when three coins are tossed.
Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine the value of k .
A random variable has the following probability distribution:
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | k | 2k | 3k | 4k |
Write the value of P (X ≥ 3).
A random variable X has the following probability distribution:
X : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | 0.15 | 0.23 | 0.12 | 0.10 | 0.20 | 0.08 | 0.07 | 0.05 |
For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them?
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:
- no defect
- at least one defect
Use e−1 = 0.3678
Solve the following problem :
Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.
Solve the following problem :
The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Calculate the probabilities of obtaining an answer yes from all of the selected students.
A random variable X has the following probability distribution
X | 2 | 3 | 4 |
P(x) | 0.3 | 0.4 | 0.3 |
Then the variance of this distribution is
For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to ______.
Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.