English

Find the Probability Distribution of Y in Two Throws of Two Dice, Where Y Represents the Number of Times a Total of 9 Appears. - Mathematics

Advertisements
Advertisements

Question

Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.

Sum

Solution

It is given that Y denotes the number of times a total of 9 appears on throwing the pair of dice.

When the dice is thrown 2 times, the possibility of getting a total of 9 is possible only for the given combinations:

(3, 6) (4, 5) (5, 4) (6, 3)

So, the total number of outcomes is 36 and the total number of favourable outcomes is 4.

Probability of getting a total of 9 =

\[\frac{4}{36} = \frac{1}{9}\]

Probability of not getting a total of 9 =

\[1 - \frac{1}{9} = \frac{8}{9}\]
If Y takes the values 0, 1 and 2, then
\[P\left( Y = 0 \right) = \frac{8}{9} \times \frac{8}{9} = \frac{64}{81}\]
\[P\left( Y = 1 \right) = \frac{1}{9} \times \frac{8}{9} + \frac{8}{9} \times \frac{1}{9} = \frac{16}{81}\]
\[P\left( Y = 2 \right) = \frac{1}{9} \times \frac{1}{9} = \frac{1}{81}\]
Thus, the probability distribution of X is given by
Y P(Y)
0
 
\[\frac{64}{81}\]
1
 
\[\frac{16}{81}\]
2
 
\[\frac{1}{81}\]
  
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Mean and Variance of a Random Variable - Exercise 32.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 19 | Page 15

RELATED QUESTIONS

Probability distribution of X is given by

X = x 1 2 3 4
P(X = x) 0.1 0.3 0.4 0.2

Find P(X ≥ 2) and obtain cumulative distribution function of X


Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


Find the probability distribution of number of tails in the simultaneous tosses of three coins.


There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (X < 2) 


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-

(a) No defects
(b) At least one defect 
[Use e-1 = 0.3678]


Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2 3 4
P(x) 0.1 0.5 0.2 –0.1 0.3

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


Solve the following problem :

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is positive.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)


For the following probability distribution:

X 1 2 3 4
P(X) `1/10` `3/10` `3/10` `2/5`

E(X2) is equal to ______.


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×