English

Solve the following : Identify the random variable as either discrete or continuous in each of the following. Write down the range of it. 20 white rats are available for an experiment. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day

Sum

Solution

Let X = number of female rats selected on a specific day

Since the total number of rats is 20 which include 12 males and 8 females, X takes the finite values

∴ random variable X is discrete.

Range = {0, 1, 2, 3, 4, 5}

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Miscellaneous Exercise 2 [Page 242]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 7 Probability Distributions
Miscellaneous Exercise 2 | Q 1.4 | Page 242

RELATED QUESTIONS

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


Find the probability distribution of number of heads in four tosses of a coin.


From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that

(i) all will bear ‘X’ mark.

(ii) not more than 2 will bear ‘Y’ mark.

(iii) at least one ball will bear ‘Y’ mark

(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.


Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


Find the probability distribution of the number of heads, when three coins are tossed. 


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi: 0 1 3 5
pi :  0.2 0.5 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.


A box contains 13 bulbs, out of which 5 are defective. 3 bulbs are randomly drawn, one by one without replacement, from the box. Find the probability distribution of the number of defective bulbs.


For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

If a random variable X has the following probability distribution:

X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

then the value of a is


A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


A random variable has the following probability distribution:

X = xi : 0 1 2 3 4 5 6 7
P (X = xi) : 0 2 p 2 p  3 p  p2 p2 p2 2 p 

The value of p is


If X is a random-variable with probability distribution as given below:

X = xi : 0 1 2 3
P (X = xi) : k 3 k 3 k k

The value of k and its variance are



Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


Verify the following function, which can be regarded as p.m.f. for the given values of X : 

X = x -1 0 1
P(x) -0.2 1 0.2

John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5 
        = 0 , otherwise.
Find E(X).


The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that : 

(a) exactly two will strike the target,
(b) at least one will strike the target. 


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.4 0.4 0.2

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2 3 4
P(x) 0.1 0.5 0.2 –0.1 0.3

Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is non-negative


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is even.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on exactly 3 days of a week.


Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Calculate `"V"("X"/2)`


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


If the p.m.f of a r. v. X is

P(x) = `c/x^3`, for x = 1, 2, 3

        = 0, otherwise

then E(X) = ______.


Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×