English

If the probability distribution of a random variable X is as given below: Write the value of P (X ≤ 2). X = xi : 1 2 3 4 P (X = xi) : c 2c 4c 4c - Mathematics

Advertisements
Advertisements

Question

If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 
Sum

Solution

We know that the sum of probabilities in a probability distribution is always 1.

∴ P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) = 1

\[\Rightarrow c + 2c + 4c + 4c = 1\]
\[ \Rightarrow 11c = 1\]
\[ \Rightarrow c = \frac{1}{11}\]
\[\text{ Now } , \]
\[P\left( X \leq 2 \right) = P\left( X = 1 \right) + P\left( X = 2 \right) = \frac{1}{10} + \frac{2}{10} = \frac{3}{11}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Mean and Variance of a Random Variable - Very Short Answers [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 32 Mean and Variance of a Random Variable
Very Short Answers | Q 6 | Page 45

RELATED QUESTIONS

State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


Find the probability distribution of number of heads in two tosses of a coin.


The random variable X has probability distribution P(X) of the following form, where k is some number:

`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`

  1. Determine the value of 'k'.
  2. Find P(X < 2), P(X ≥ 2), P(X ≤ 2).

Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)

X : 3 2 1 0 −1
(X) : 0.3 0.2 0.4 0.1 0.05
 
(ii)
X : 0 1 2
P (X) : 0.6 0.4 0.2


(iii)

X : 0 1 2 3 4
P (X) : 0.1 0.5 0.2 0.1 0.1
 


(iv)

X : 0 1 2 3
P (X) : 0.3 0.2 0.4 0.1
 

A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.


Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


Find the mean and standard deviation of each of the following probability distribution :

xi: 0 1 3 5
pi :  0.2 0.5 0.2 0.1

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes. 


Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following: 

Age x 0 1 2
lx 1000 880 876
T - - 3323

Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


Verify the following function, which can be regarded as p.m.f. for the given values of X : 

X = x -1 0 1
P(x) -0.2 1 0.2

If X ∼ N (4,25), then find P(x ≤ 4)


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


A random variable X has the following probability distribution

X 2 3 4
P(x) 0.3 0.4 0.3

Then the variance of this distribution is


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×