Advertisements
Advertisements
Question
A random variable X has the following probability distribution:
Values of X : | −2 | −1 | 0 | 1 | 2 | 3 |
P (X) : | 0.1 | k | 0.2 | 2k | 0.3 | k |
Find the value of k.
Solution
We know that the sum of probabilities in a probability distribution is always 1.
∴ P (X = -2) + P (X =-1) + P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 1
\[\Rightarrow 0 . 1 + k + 0 . 2 + 2k + 0 . 3 + k = 1\]
\[ \Rightarrow 4k + 0 . 6 = 1\]
\[ \Rightarrow k = \frac{0 . 4}{4} = 0 . 1\]
APPEARS IN
RELATED QUESTIONS
A random variable X has the following probability distribution:
then E(X)=....................
Probability distribution of X is given by
X = x | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | 0.3 | 0.4 | 0.2 |
Find P(X ≥ 2) and obtain cumulative distribution function of X
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Y | -1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is
(A) `37/221`
(B) 5/13
(C) 1/13
(D) 2/13
An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ‘X’ mark.
(ii) not more than 2 will bear ‘Y’ mark.
(iii) at least one ball will bear ‘Y’ mark
(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.
Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:
1) Exactly two persons hit the target.
2) At least two persons hit the target.
3) None hit the target.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.
In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).
If the probability distribution of a random variable X is given by Write the value of k.
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | 2k | 4k | 3k | k |
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
Write the negation of the following statements :
(a) Chetan has black hair and blue eyes.
(b) ∃ x ∈ R such that x2 + 3 > 0.
Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :
X | -1 | 0 | 1 |
P(X = x) | -0.2 | 1 | 0.2 |
From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results :
Age Group (in years) | Town I | Town II | ||
Population | No. of deaths | Population | No. of deaths | |
0-10 | 1500 | 45 | 6000 | 150 |
10-25 | 5000 | 30 | 6000 | 40 |
25 - 45 | 3000 | 15 | 5000 | 20 |
45 & above | 500 | 22 | 3000 | 54 |
A random variable X has the following probability distribution :
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
P(X) | C | 2C | 2C | 3C | C2 | 2C2 | 7C2+C |
Find the value of C and also calculate the mean of this distribution.
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day
Solve the following:
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
Solve the following problem :
Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Find the value of k
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to ______.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.
Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?