English

A Random Variable X Has the Following Probability Distribution :Find the Value of C and Also Calculate the Mean of this Distribution. - Mathematics

Advertisements
Advertisements

Question

A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6
P(X) C 2C 2C 3C C2 2C2 7C2+C

Find the value of C and also calculate the mean of this distribution.

Sum

Solution

As `sum "P"("X") = 1`

∴ `"C" + 2"C" + 2"C" + 3"C" + "C"^2 + 2"C"^2 + 7"C"^2 + "C"  = 1`

⇒ `10"C"^2 + 9"C" -1 = 0`

⇒ `(10"C" -1)("C" + 1)= 0`

∵  `"C"  != -1`

so, `"C" = (1)/(10)`.


Also mean = `sum "X""P"("X") = 0 xx "C" + 1 xx 2"C" + 2 xx 2"C" + 3 xx 3"C" + 4 xx "C"^2 + 5 xx 2"C"^2 + 6 xx (7"C"^2 + "C")`

⇒ = `21"C" + 56"C"^2 = 56 xx (1)/(100) + 21 xx (1)/(10) = (266)/(100) or 2.66`.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

RELATED QUESTIONS

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]

 


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


If X is a random-variable with probability distribution as given below:

X = xi : 0 1 2 3
P (X = xi) : k 3 k 3 k k

The value of k and its variance are



The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5 
        = 0 , otherwise.
Find E(X).


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?


Determine whether each of the following is a probability distribution. Give reasons for your answer.

z 3 2 1 0 -1
P(z) 0.3 0.2 0.4. 0.05 0.05

Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2

A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: The value of A if E(X) = 2.94


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×