English

A Fair Coin is Tossed Four Times. Let X Denote the Longest String of Heads Occurring. Find the Probability Distribution, Mean and Variance of X. - Mathematics

Advertisements
Advertisements

Question

A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.

Solution

If a coin is tossed 4 times, then the possible outcomes are:
HHHHHHHTHHTHHHTTHTHHHTHTHTTHHTTTTHHHTHHTTHTHTHTTTTHHTTHTTTTH and TTTT .
For the longest string of heads, X can take the values 0, 1, 2, 3 and 4.
(As when the coin is tossed 4 times, we can get maximum 4 and minimum 0 strings.)
Now,

\[P\left( X = 0 \right) = P\left( 0 \text{ head }  \right) = \frac{1}{16}\]
\[P\left( X = 1 \right) = P\left( 1 \text{ head }  \right) = \frac{7}{16}\]
\[P\left( X = 2 \right) = P\left( 2 \text{ heads } \right) = \frac{5}{16}\]
\[P\left( X = 3 \right) = P\left( 3 \text{ heads }  \right) = \frac{2}{16}\]
\[P\left( X = 4 \right) = P\left( 4 \text{ heads }  \right) = \frac{1}{16}\]

Thus, the probability distribution of X is given by

x P(X)
0
\[\frac{1}{16}\]
1
\[\frac{7}{16}\]
2
\[\frac{5}{16}\]
3
\[\frac{2}{16}\]
4
\[\frac{1}{16}\]

Computation of mean and variance

xi pi pixi pixi2
0
\[\frac{1}{16}\]
0 0
1
\[\frac{7}{16}\]
\[\frac{7}{16}\]
\[\frac{7}{16}\]
2
\[\frac{5}{16}\]
\[\frac{10}{16}\]
\[\frac{20}{16}\]
3
\[\frac{2}{16}\]
\[\frac{6}{16}\]
\[\frac{18}{16}\]
4
\[\frac{1}{16}\]
\[\frac{4}{16}\]
1
    `∑`pixi = \[\frac{27}{16}\]
 
`∑`pixi2 =\[\frac{61}{16}\]

\[\text{ Mean }  = \sum p_i x_i = \frac{27}{16} = 1 . 7\]
\[\text{ Variance } = \sum p_i {x_i}2^{}_{} - \left( \text{ Mean }  \right)^2 \]
\[ = \frac{61}{16} - \frac{729}{256}\]
\[ = \frac{247}{256}\]
\[ = 0 . 9\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Mean and Variance of a Random Variable - Exercise 32.2 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 32 Mean and Variance of a Random Variable
Exercise 32.2 | Q 12 | Page 43

RELATED QUESTIONS

State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

Find the probability distribution of number of heads in two tosses of a coin.


From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]

 


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.


Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Find the value of k.


Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.

 

Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.     


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes. 


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5 
        = 0 , otherwise.
Find E(X).


A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6
P(X) C 2C 2C 3C C2 2C2 7C2+C

Find the value of C and also calculate the mean of this distribution.


Determine whether each of the following is a probability distribution. Give reasons for your answer.

z 3 2 1 0 -1
P(z) 0.3 0.2 0.4. 0.05 0.05

The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Solve the following problem :

The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______


Find the mean and variance of the number randomly selected from 1 to 15


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


A primary school teacher wants to teach the concept of 'larger number' to the students of Class II. 

To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.

All the outcomes of this activity are tabulated in the form of ordered pairs given below:

  2 3 4 5
2 (2, 2) (2, 3) (2, 4)  
3 (3, 2) (3, 3)   (3, 5)
4 (4, 2)   (4, 4) (4, 5)
5   (5, 3) (5, 4) (5, 5)
  1. Complete the table given above.
  2. Find the total number of ordered pairs having one larger number.
  3. Let the random variable X denote the larger of two numbers in the ordered pair.
    Now, complete the probability distribution table for X given below.
    X 3 4 5
    P(X = x)      
  4. Find the value of P(X < 5)
  5. Calculate the expected value of the probability distribution.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×