English

Solve the following problem : The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.

Sum

Solution

Let X denote the number of bombs hitting the target.
P(bomb hits the target) = p = 0.8
∴ q = 1 – p = 1 – 0.8 = 0.2
Given, n = 5
∴ X ~ B(5, 0.8)
The p.m.f. of X is given by
P(X = x) `""^5"C"_x (0.8)^x (0.2)^(5 - x), x` = 0, 1,...,5
∴ P(exactly two will miss the target)
= P(exactly three will hit the target)
= P(X = 3)
= `""^5"C"_3 (0.8)^3 (0.2)^(2)`

= `(5!)/(3! xx 2!)(4/5)^3 (1/5)^2`

= `(5 xx 4 xx 3!)/(2 xx 1 xx 3!) xx (4^3/5^5)`

= `10(4^3/5^5)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Part II [Page 156]

APPEARS IN

RELATED QUESTIONS

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (X < 2) 


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that : 

(a) exactly two will strike the target,
(b) at least one will strike the target. 


An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.4 0.4 0.2

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Calculate `"V"("X"/2)`


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine P(X ≤ 2) and P(X > 2)


The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: Variance of X


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×