English

A Pair of Fair Dice is Thrown. Let X Be the Random Variable Which Denotes the Minimum of the Two Numbers Which Appear. Find the Probability Distribution, Mean and Variance of X. - Mathematics

Advertisements
Advertisements

Question

A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

Solution

Let X denote the event of getting twice the number. Then, X can take the values 1, 2, 3, 4, 5 and 6.
Thus, the probability distribution of X is given by

x P(X)
1
\[\frac{11}{36}\]
2
\[\frac{9}{36}\]
3
\[\frac{7}{36}\]
4
\[\frac{5}{36}\]
5
\[\frac{3}{36}\]
6
\[\frac{1}{36}\]

Computation of mean and variance

xi pi pixi pixi2
1
\[\frac{11}{36}\]
\[\frac{11}{36}\]
\[\frac{11}{36}\]
2
\[\frac{9}{36}\]
\[\frac{18}{36}\]
1
3
\[\frac{7}{36}\]
\[\frac{21}{36}\]
\[\frac{63}{36}\]
4
\[\frac{5}{36}\]
\[\frac{20}{36}\]
\[\frac{80}{36}\]
5
\[\frac{3}{36}\]
\[\frac{15}{36}\]
\[\frac{75}{36}\]
6
\[\frac{1}{36}\]
\[\frac{6}{36}\]
1
    `∑`pixi =\[\frac{91}{36} = 2 . 5\]
 
`∑`pixi2=\[\frac{301}{36} = 8 . 4\]

\[\text{ Mean }  = \sum p_i x_i = 2 . 5\]
\[\text{ Variance }  = \sum p_i {x_i}2^{}_{} - \left( \text{ Mean }  \right)^2 = 8 . 4 - 6 . 25 = 2 . 15\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Mean and Variance of a Random Variable - Exercise 32.2 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 32 Mean and Variance of a Random Variable
Exercise 32.2 | Q 8 | Page 43

RELATED QUESTIONS

From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -

(a) exactly 1 defective bulb.

(b) at least 1 defective bulb.


Find the probability distribution of number of heads in two tosses of a coin.


From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)

X : 3 2 1 0 −1
(X) : 0.3 0.2 0.4 0.1 0.05
 
(ii)
X : 0 1 2
P (X) : 0.6 0.4 0.2


(iii)

X : 0 1 2 3 4
P (X) : 0.1 0.5 0.2 0.1 0.1
 


(iv)

X : 0 1 2 3
P (X) : 0.3 0.2 0.4 0.1
 

The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (X < 2) 


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


Find the probability distribution of the number of heads, when three coins are tossed. 


Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.      


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is                

 

 


Find the probability distribution of the number of doublets in three throws of a pair of dice and find its mean.


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes. 


For the following probability density function (p. d. f) of X, find P(X < 1) and P(|x| < 1) 

`f(x) = x^2/18, -3 < x < 3`

            = 0,             otherwise


Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following: 

Age x 0 1 2
lx 1000 880 876
T - - 3323

The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )


Compute the age specific death rate for the following data : 

Age group (years) Population (in thousands) Number of deaths
Below 5  15 360
5-30  20 400
Above 30  10 280

John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.


Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2

Solve the following problem :

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is positive.


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)


A random variable x has to following probability distribution.

X 0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


Find the mean of number randomly selected from 1 to 15.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×