Advertisements
Advertisements
प्रश्न
A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.
उत्तर
Let X denote the event of getting twice the number. Then, X can take the values 1, 2, 3, 4, 5 and 6.
Thus, the probability distribution of X is given by
x | P(X) |
1 |
\[\frac{11}{36}\]
|
2 |
\[\frac{9}{36}\]
|
3 |
\[\frac{7}{36}\]
|
4 |
\[\frac{5}{36}\]
|
5 |
\[\frac{3}{36}\]
|
6 |
\[\frac{1}{36}\]
|
Computation of mean and variance
xi | pi | pixi | pixi2 |
1 |
\[\frac{11}{36}\]
|
\[\frac{11}{36}\]
|
\[\frac{11}{36}\]
|
2 |
\[\frac{9}{36}\]
|
\[\frac{18}{36}\]
|
1 |
3 |
\[\frac{7}{36}\]
|
\[\frac{21}{36}\]
|
\[\frac{63}{36}\]
|
4 |
\[\frac{5}{36}\]
|
\[\frac{20}{36}\]
|
\[\frac{80}{36}\]
|
5 |
\[\frac{3}{36}\]
|
\[\frac{15}{36}\]
|
\[\frac{75}{36}\]
|
6 |
\[\frac{1}{36}\]
|
\[\frac{6}{36}\]
|
1 |
`∑`pixi =\[\frac{91}{36} = 2 . 5\]
|
`∑`pixi2=\[\frac{301}{36} = 8 . 4\] |
\[\text{ Mean } = \sum p_i x_i = 2 . 5\]
\[\text{ Variance } = \sum p_i {x_i}2^{}_{} - \left( \text{ Mean } \right)^2 = 8 . 4 - 6 . 25 = 2 . 15\]
APPEARS IN
संबंधित प्रश्न
Find the probability distribution of number of heads in two tosses of a coin.
Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:
1) Exactly two persons hit the target.
2) At least two persons hit the target.
3) None hit the target.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (1 < X ≤ 2)
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
A fair coin is tossed four times. Let X denote the number of heads occurring. Find the probability distribution, mean and variance of X.
An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.
For what value of k the following distribution is a probability distribution?
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | 2k4 | 3k2 − 5k3 | 2k − 3k2 | 3k − 1 |
If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.
A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is
Find the probability distribution of the number of doublets in three throws of a pair of dice and find its mean.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows :
Aeroplanes | Cargo consignments | ||
C1 | C2 | C3 | |
A1 | 1 | 4 | 5 |
A2 | 2 | 3 | 3 |
A3 | 3 | 1 | 2 |
How should the cargo consignments be assigned to the aeroplanes to maximize the profit?
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
Write the negation of the following statements :
(a) Chetan has black hair and blue eyes.
(b) ∃ x ∈ R such that x2 + 3 > 0.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results :
Age Group (in years) | Town I | Town II | ||
Population | No. of deaths | Population | No. of deaths | |
0-10 | 1500 | 45 | 6000 | 150 |
10-25 | 5000 | 30 | 6000 | 40 |
25 - 45 | 3000 | 15 | 5000 | 20 |
45 & above | 500 | 22 | 3000 | 54 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 | 3 | 4 |
P(x) | 0.1 | 0.5 | 0.2 | –0.1 | 0.3 |
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0
Find the probability distribution of the number of doublets in three throws of a pair of dice
Find the mean and variance of the number randomly selected from 1 to 15
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: The value of A if E(X) = 2.94
For the following probability distribution:
X | 1 | 2 | 3 | 4 |
P(X) | `1/10` | `3/10` | `3/10` | `2/5` |
E(X2) is equal to ______.
A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.
A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.