मराठी

Two Cards Are Drawn Successively with Replacement from a Well Shuffled Pack of 52 Cards. Find the Probability Distribution of the Number of Kings. - Mathematics

Advertisements
Advertisements

प्रश्न

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.

बेरीज

उत्तर

Let X denote the number of kings in a sample of 2 cards drawn from a well-shuffled pack of 52 playing cards. Then, X can take the values 0, 1 and 2.
Now,

\[P\left( X = 0 \right)\]

\[ = P\left( \text{ no kings } \right)\]

\[ = \frac{48}{52} \times \frac{48}{52}\]

\[ = \frac{12 \times 12}{13 \times 13}\]

\[ = \frac{144}{169}\]

\[P\left( X = 1 \right)\]

\[ = P\left( 1 \text{ king } \right)\]

\[ = \frac{4}{52} \times \frac{48}{52}\]

\[ = \frac{2 \times 12}{13 \times 13}\]

\[ = \frac{24}{169}\]

\[P\left( X = 2 \right)\]

\[ = P\left( 2 \text{ kings } \right)\]

\[ = \frac{4}{52} \times \frac{4}{52}\]

\[ = \frac{1 \times 1}{13 \times 13}\]

\[ = \frac{1}{169}\]

Thus, the probability distribution of X is given by

X P(X)
0
 
\[\frac{144}{169}\]
1
 
\[\frac{24}{169}\]
2
 
\[\frac{1}{169}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Mean and Variance of a Random Variable - Exercise 32.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 16 | पृष्ठ १५

संबंधित प्रश्‍न

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


Find the probability distribution of number of tails in the simultaneous tosses of three coins.


A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.                         


A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.

 

Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

If a random variable X has the following probability distribution:

X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

then the value of a is


A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.4 0.4 0.2

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Find the probability that the visitor obtains the answer yes from at least 3 students.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


The probability distribution of a discrete random variable X is given below:

X 2 3 4 5
P(X) `5/"k"` `7/"k"` `9/"k"` `11/"k"`

The value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×