Advertisements
Advertisements
प्रश्न
Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls
उत्तर
Let X denote the number of white balls in a sample of 3 balls drawn from a bag containing 4 white and 6 red balls. Then, X can take the values 0, 1, 2 and 3.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no white ball } \right)\]
\[ = \frac{{}^6 C_3}{{}^{10} C_3}\]
\[ = \frac{20}{120}\]
\[ = \frac{1}{6}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ white ball } \right)\]
\[ = \frac{{}^4 C_1 \times^6 C_2}{{}^{10} C_3}\]
\[ = \frac{60}{120}\]
\[ = \frac{1}{2}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ white balls } \right)\]
\[ = \frac{{}^4 C_2 \times^6 C_1}{{}^{10} C_3}\]
\[ = \frac{36}{120}\]
\[ = \frac{3}{10}\]
\[P\left( X = 3 \right)\]
\[ = P\left( 3 \text{ white balls } \right)\]
\[ = \frac{{}^4 C_3}{{}^{10} C_3}\]
\[ = \frac{4}{120}\]
\[ = \frac{1}{30}\]
Thus, the probability distribution of X is given by
X | P(X) |
0 |
\[\frac{1}{6}\]
|
1 |
\[\frac{1}{2}\]
|
2 |
\[\frac{3}{10}\]
|
3 |
\[\frac{1}{30}\]
|
APPEARS IN
संबंधित प्रश्न
From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -
(a) exactly 1 defective bulb.
(b) at least 1 defective bulb.
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ‘X’ mark.
(ii) not more than 2 will bear ‘Y’ mark.
(iii) at least one ball will bear ‘Y’ mark
(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.
A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).
There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:
X= xi: | -2 | -1 | 0 | 1 |
P(X= xi) : |
\[\frac{1 - a}{4}\]
|
\[\frac{1 + 2a}{4}\]
|
\[\frac{1 - 2a}{4}\]
|
\[\frac{1 + a}{4}\]
|
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0); 0 < x < 1(otherwise)
John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them?
A random variable X has the following probability distribution :
X = x | -2 | -1 | 0 | 1 | 2 | 3 |
P(x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
Find the value of k and calculate mean.
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.
The following table gives the age of the husbands and of the wives :
Age of wives (in years) |
Age of husbands (in years) |
|||
20-30 | 30- 40 | 40- 50 | 50- 60 | |
15-25 | 5 | 9 | 3 | - |
25-35 | - | 10 | 25 | 2 |
35-45 | - | 1 | 12 | 2 |
45-55 | - | - | 4 | 16 |
55-65 | - | - | - | 4 |
Find the marginal frequency distribution of the age of husbands.
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 | 3 | 4 |
P(x) | 0.1 | 0.5 | 0.2 | –0.1 | 0.3 |
A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.
Find the probability distribution of the number of doublets in three throws of a pair of dice
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Variance of X.
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.
- If X denotes the random variable “points earned” then what are the possible values X can take?
- Find the probability distribution of this random variable X.
- Find the expected value of the points she gets.