English

Find the Probability Distribution of the Number of White Balls Drawn in a Random Draw of 3 Balls Without Replacement, from a Bag Containing 4 White and 6 Red Balls - Mathematics

Advertisements
Advertisements

Question

Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls

Sum

Solution

 Let X denote the number of white balls in a sample of 3 balls drawn from a bag containing 4 white and 6 red balls. Then, X can take the values 0, 1, 2 and 3.
Now,

\[P\left( X = 0 \right)\]

\[ = P\left( \text{ no white ball } \right)\]

\[ = \frac{{}^6 C_3}{{}^{10} C_3}\]

\[ = \frac{20}{120}\]

\[ = \frac{1}{6}\]

\[P\left( X = 1 \right)\]

\[ = P\left( 1 \text{ white ball } \right)\]

\[ = \frac{{}^4 C_1 \times^6 C_2}{{}^{10} C_3}\]

\[ = \frac{60}{120}\]

\[ = \frac{1}{2}\]

\[P\left( X = 2 \right)\]

\[ = P\left( 2 \text{ white balls } \right)\]

\[ = \frac{{}^4 C_2 \times^6 C_1}{{}^{10} C_3}\]

\[ = \frac{36}{120}\]

\[ = \frac{3}{10}\]

\[P\left( X = 3 \right)\]

\[ = P\left( 3 \text{ white balls } \right)\]

\[ = \frac{{}^4 C_3}{{}^{10} C_3}\]

\[ = \frac{4}{120}\]

\[ = \frac{1}{30}\]

Thus, the probability distribution of X is given by

X P(X)
0
 
\[\frac{1}{6}\]
1
 
\[\frac{1}{2}\]
2
 
\[\frac{3}{10}\]
3
 
\[\frac{1}{30}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Mean and Variance of a Random Variable - Exercise 32.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 18 | Page 15

RELATED QUESTIONS

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.


Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

Find the mean and standard deviation of each of the following probability distribution :

xi :  0 1 2 3 4 5
pi : 
\[\frac{1}{6}\]
\[\frac{5}{18}\]
\[\frac{2}{9}\]
\[\frac{1}{6}\]
\[\frac{1}{9}\]
\[\frac{1}{18}\]

A box contains 13 bulbs, out of which 5 are defective. 3 bulbs are randomly drawn, one by one without replacement, from the box. Find the probability distribution of the number of defective bulbs.


Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.

  1. If X denotes the random variable “points earned” then what are the possible values X can take?
  2. Find the probability distribution of this random variable X.
  3. Find the expected value of the points she gets.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×