Advertisements
Advertisements
Question
Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Solution
Let X denote the number of aces in a sample of 2 cards drawn from a well-shuffled pack of 52 playing cards. Then, X can take the values 0, 1 and 2.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no ace } \right)\]
\[ = \frac{48}{52} \times \frac{47}{51}\]
\[ = \frac{2256}{2652}\]
\[ = \frac{188}{221}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ ace } \right)\]
\[ = \frac{4}{52} \times \frac{48}{51} + \frac{48}{52} \times \frac{4}{51}\]
\[ = \frac{384}{2652}\]
\[ = \frac{32}{221}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ aces } \right)\]
\[ = \frac{4}{52} \times \frac{3}{51}\]
\[ = \frac{12}{2652}\]
\[ = \frac{1}{221}\]
Thus, the probability distribution of X is given by
X | P(X) |
0 |
\[\frac{188}{221}\]
|
1 |
\[\frac{32}{221}\]
|
2 |
\[\frac{1}{221}\]
|
APPEARS IN
RELATED QUESTIONS
From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -
(a) exactly 1 defective bulb.
(b) at least 1 defective bulb.
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
Two cards are drawn successively with replacement from well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls
An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.
A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution :
xi : | 0 | 1 | 2 | 3 | 4 | 5 |
pi : |
\[\frac{1}{6}\]
|
\[\frac{5}{18}\]
|
\[\frac{2}{9}\]
|
\[\frac{1}{6}\]
|
\[\frac{1}{9}\]
|
\[\frac{1}{18}\]
|
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
If p : It is a day time , q : It is warm
Give the verbal statements for the following symbolic statements :
(a) p ∧ ∼ q (b) p v q (c) p ↔ q
If X ∼ N (4,25), then find P(x ≤ 4)
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :
X | -1 | 0 | 1 |
P(X = x) | -0.2 | 1 | 0.2 |
From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results :
Age Group (in years) | Town I | Town II | ||
Population | No. of deaths | Population | No. of deaths | |
0-10 | 1500 | 45 | 6000 | 150 |
10-25 | 5000 | 30 | 6000 | 40 |
25 - 45 | 3000 | 15 | 5000 | 20 |
45 & above | 500 | 22 | 3000 | 54 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.3 | 0.4 | 0.2 |
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.
For the following probability distribution:
X | 1 | 2 | 3 | 4 |
P(X) | `1/10` | `3/10` | `3/10` | `2/5` |
E(X2) is equal to ______.
If the p.m.f of a r. v. X is
P(x) = `c/x^3`, for x = 1, 2, 3
= 0, otherwise
then E(X) = ______.
A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.