Advertisements
Advertisements
Question
Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
Solution
Three fair coins are tossed simultaneously.
∴ S = {HHH , HHT , HTH , THH , HTT , THT , TTH , TTT}
∴ n (S) = 8
X = the number of heads.
∴ Range set of X = {0,1,2,3}
∴ P(X = 0) = P {TTT} = `1/8`
P (X = 1) = P {HTT , THT , TTH} = `3/8`
P (X = 2) = P {HHT , HTH , THH} = `3/8`
P (X = 3) = P {HHH} = `1/8`
Hence the probability distribution of X is as shown in the following table:
X = x | 0 | 1 | 2 | 3 |
P (X = x) | `1/8` | `3/8` | `3/8` | `1/8` |
APPEARS IN
RELATED QUESTIONS
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Z | 3 | 2 | 1 | 0 | -1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Find P(X ≤ 2) + P(X > 2) .
Find the mean and standard deviation of each of the following probability distributions:
xi : | 2 | 3 | 4 |
pi : | 0.2 | 0.5 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -5 | -4 | 1 | 2 |
pi : | \[\frac{1}{4}\] | \[\frac{1}{8}\] | \[\frac{1}{2}\] | \[\frac{1}{8}\] |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.
A random variable X has the following probability distribution:
X : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | 0.15 | 0.23 | 0.12 | 0.10 | 0.20 | 0.08 | 0.07 | 0.05 |
For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
Verify the following function, which can be regarded as p.m.f. for the given values of X :
X = x | -1 | 0 | 1 |
P(x) | -0.2 | 1 | 0.2 |
Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows :
Aeroplanes | Cargo consignments | ||
C1 | C2 | C3 | |
A1 | 1 | 4 | 5 |
A2 | 2 | 3 | 3 |
A3 | 3 | 1 | 2 |
How should the cargo consignments be assigned to the aeroplanes to maximize the profit?
A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that :
(a) exactly two will strike the target,
(b) at least one will strike the target.
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
Solve the following:
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.
There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?
Solve the following problem :
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is positive.
Solve the following problem :
Following is the probability distribution of a r.v.X.
x | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is even.
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows 3 heads
Solve the following problem :
A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | – 10 |
P(X) | `1/5` | `3/10` | `1/2` |
Then E(X) is equal to ______.
Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.
The probability distribution of a discrete random variable X is given below:
X | 2 | 3 | 4 | 5 |
P(X) | `5/"k"` | `7/"k"` | `9/"k"` | `11/"k"` |
The value of k is ______.
If the p.m.f of a r. v. X is
P(x) = `c/x^3`, for x = 1, 2, 3
= 0, otherwise
then E(X) = ______.
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.
Solution:
Here, n = 4
p = probability of defective device = 10% = `10/100 = square`
∴ q = 1 - p = 1 - 0.1 = `square`
X ∼ B(4, 0.1)
`P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`
P[At most one defective device] = P[X ≤ 1]
= P[X=0] + P[X=1]
= `square+square`
∴ P[X ≤ 1] = `square`
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.