English

State the Following Are Not The Probability Distributions of a Random Variable. Give Reasons for Your Answer.-4 - Mathematics

Advertisements
Advertisements

Question

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Z 3 2 1 0 -1
P(Z) 0.3 0.2 0.4 0.1 0.05

Solution

It is known that the sum of all the probabilities in a probability distribution is one.

Sum of the probabilities = 0.3 + 0.2 + 0.4 + 0.1 + 0.05 = 1.05 ≠ 1

Therefore, the given table is not a probability distribution of random variables.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.4 [Page 569]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.4 | Q 1.4 | Page 569

RELATED QUESTIONS

Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]

 


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


Determine whether each of the following is a probability distribution. Give reasons for your answer.

z 3 2 1 0 -1
P(z) 0.3 0.2 0.4. 0.05 0.05

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.


A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?


Solve the following problem :

The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.


Solve the following problem :

A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Determine the mean of the distribution.


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×