English

Solve the following: Identify the random variable as either discrete or continuous in each of the following. Write down the range of it. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.

Sum

Solution

Let X = speed of the car in km/hr

Then X takes uncountable infinite values

∴ random variable X is continuous.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Miscellaneous Exercise 2 [Page 242]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 7 Probability Distributions
Miscellaneous Exercise 2 | Q 1.5 | Page 242

RELATED QUESTIONS

A random variable X has the following probability distribution:

then E(X)=....................


Probability distribution of X is given by

X = x 1 2 3 4
P(X = x) 0.1 0.3 0.4 0.2

Find P(X ≥ 2) and obtain cumulative distribution function of X


Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


Find the probability distribution of number of heads in four tosses of a coin.


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?


Two cards are drawn successively with replacement from well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:

Xxi: -2 -1 0 1
P(Xxi) :
\[\frac{1 - a}{4}\]
 
\[\frac{1 + 2a}{4}\]
\[\frac{1 - 2a}{4}\]
\[\frac{1 + a}{4}\]

If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes. 


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is non-negative


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Calculate `"V"("X"/2)`


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: Variance of X


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)


The probability distribution of a discrete random variable X is given below:

X 2 3 4 5
P(X) `5/"k"` `7/"k"` `9/"k"` `11/"k"`

The value of k is ______.


If the p.m.f of a r. v. X is

P(x) = `c/x^3`, for x = 1, 2, 3

        = 0, otherwise

then E(X) = ______.


Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.


Find the mean of number randomly selected from 1 to 15.


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


A primary school teacher wants to teach the concept of 'larger number' to the students of Class II. 

To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.

All the outcomes of this activity are tabulated in the form of ordered pairs given below:

  2 3 4 5
2 (2, 2) (2, 3) (2, 4)  
3 (3, 2) (3, 3)   (3, 5)
4 (4, 2)   (4, 4) (4, 5)
5   (5, 3) (5, 4) (5, 5)
  1. Complete the table given above.
  2. Find the total number of ordered pairs having one larger number.
  3. Let the random variable X denote the larger of two numbers in the ordered pair.
    Now, complete the probability distribution table for X given below.
    X 3 4 5
    P(X = x)      
  4. Find the value of P(X < 5)
  5. Calculate the expected value of the probability distribution.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×