Advertisements
Advertisements
Question
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
Solution
xi | pi | pixi | pixi2 |
a | p | ap | a2p |
b | q | bq | b2q |
`∑`pixi = ap + bq | `∑`pixi2=a2p+b2q
|
\[\text{ Now } , \]
\[\text{ Mean } = \sum p_i x_i = ap + bq\]
\[\text{ Variance} = \sum p_i {x_i}2^{}_{} - \left( \text{Mean } \right)^2 = a^2 p + b^2 q - \left( ap + bq \right)^2 \]
\[ = a^2 p + b^2 q - a^2 p^2 - b^2 q^2 - 2abpq\]
\[ = a^2 p - a^2 p^2 + b^2 q - b^2 q^2 - 2abpq\]
\[ = a^2 p\left( 1 - p \right) + b^2 q\left( 1 - q \right) - 2abpq\]
\[ = a^2 pq + b^2 qp - 2abpq ............... \left( \because p + q = 1 \right)\]
\[ = pq\left( a^2 + b^2 - 2ab \right)\]
\[ = pq \left( a - b \right)^2 \]
\[\text{ Step Deviation } = \sqrt{\text{ Variance} }\]
\[ = \sqrt{pq \left( a - b \right)^2}\]
\[ = \left| a - b \right|\sqrt{pq}\]
APPEARS IN
RELATED QUESTIONS
From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -
(a) exactly 1 defective bulb.
(b) at least 1 defective bulb.
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?
There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
A random variable X takes the values 0, 1, 2 and 3 such that:
P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) . Obtain the probability distribution of X.
Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
A fair coin is tossed four times. Let X denote the number of heads occurring. Find the probability distribution, mean and variance of X.
Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
For what value of k the following distribution is a probability distribution?
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | 2k4 | 3k2 − 5k3 | 2k − 3k2 | 3k − 1 |
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
A random variable has the following probability distribution:
X = xi : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P (X = xi) : | 0 | 2 p | 2 p | 3 p | p2 | 2 p2 | 7 p2 | 2 p |
The value of p is
Mark the correct alternative in the following question:
For the following probability distribution:
X: | −4 | −3 | −2 | −1 | 0 |
P(X): | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
The value of E(X) is
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Let X be a random variable which assumes values x1 , x2, x3 , x4 such that 2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .
Determine whether each of the following is a probability distribution. Give reasons for your answer.
y | –1 | 0 | 1 |
P(y) | 0.6 | 0.1 | 0.2 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.3 | 0.4 | 0.2 |
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Determine the value of k.
If the p.m.f of a r. v. X is
P(x) = `c/x^3`, for x = 1, 2, 3
= 0, otherwise
then E(X) = ______.
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.