English

Solve the following problem : The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.

Sum

Solution

Let X denote the number of machines that run within specification.
P(a machine will produce all bolts in production run within the specification) = p = 0.9
∴ q = 1 – p = 1 – 0.9 = 0.1
Given, n = 3
∴ X ~ B(3, 0.9)
The p.m.f. of X is given by
P(X = x) = `""^3"C"_x (0.9)^x (0.1)^(3 - x),x` = 0, 1, 2, 3.
P(all machines will produce all bolts in a production run within the specification)
= P(X = 3)
= `""^3"C"_3 (0.9)^3 (0.1)^0`
= 0.729

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Part II [Page 157]

APPEARS IN

RELATED QUESTIONS

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).


An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.      


If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Compute the age specific death rate for the following data : 

Age group (years) Population (in thousands) Number of deaths
Below 5  15 360
5-30  20 400
Above 30  10 280

If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


If X ∼ N (4,25), then find P(x ≤ 4)


The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-

(a) No defects
(b) At least one defect 
[Use e-1 = 0.3678]


The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that : 

(a) exactly two will strike the target,
(b) at least one will strike the target. 


Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Find the probability distribution of the number of doublets in three throws of a pair of dice


Find the mean and variance of the number randomly selected from 1 to 15


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Calculate `"V"("X"/2)`


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×