Advertisements
Advertisements
प्रश्न
An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.
उत्तर
As, X represent the number of black balls drawn.
So, it can take values 0, 1 and 2. Yes, X is a random variable.
Now,
\[P\left( X = 0 \right) = P\left( RR \right) = \frac{5}{7} \times \frac{4}{6} = \frac{10}{21}, \]
\[P\left( X = 1 \right) = P\left( RB \text{ or } BR \right) = 2 \times \frac{5}{7} \times \frac{2}{6} = \frac{10}{21}, \]
\[P\left( X = 2 \right) = P\left( BB \right) = \frac{2}{7} \times \frac{1}{6} = \frac{1}{21}\]
\[\text{ Mean } = \sum p_i x_i = 0 \times \frac{10}{21} + 1 \times \frac{10}{21} + 2 \times \frac{1}{21}\]
\[ = \frac{10}{21} + \frac{2}{21}\]
\[ = \frac{12}{21}\]
\[ = \frac{4}{7}\]
\[\text{ Also } , \sum p_i {x_i}^2 = 0^2 \times \frac{10}{21} + 1^2 \times \frac{10}{21} + 2^2 \times \frac{1}{21}\]
\[ = \frac{10}{21} + \frac{4}{21}\]
\[ = \frac{14}{21}\]
\[ = \frac{2}{3}\]
\[\text{ So, variance } = \sum p_i {x_i}^2 - \left( \text{ Mean } \right)^2 \]
\[ = \frac{2}{3} - \left( \frac{4}{7} \right)^2 \]
\[ = \frac{2}{3} - \frac{16}{49}\]
\[ = \frac{98 - 48}{147}\]
\[ = \frac{50}{147}\]
APPEARS IN
संबंधित प्रश्न
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | -0.1 | 0.3 |
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)
X : | 3 | 2 | 1 | 0 | −1 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
X : | 0 | 1 | 2 |
P (X) : | 0.6 | 0.4 | 0.2 |
(iii)
X : | 0 | 1 | 2 | 3 | 4 |
P (X) : | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 |
(iv)
X : | 0 | 1 | 2 | 3 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 |
Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.
Find the mean and standard deviation of each of the following probability distribution :
xi : | -3 | -1 | 0 | 1 | 3 |
pi : | 0.05 | 0.45 | 0.20 | 0.25 | 0.05 |
A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.
A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .
If the probability distribution of a random variable X is given by Write the value of k.
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | 2k | 4k | 3k | k |
A random variable has the following probability distribution:
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | k | 2k | 3k | 4k |
Write the value of P (X ≥ 3).
Mark the correct alternative in the following question:
For the following probability distribution:
X: | −4 | −3 | −2 | −1 | 0 |
P(X): | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
The value of E(X) is
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution.
An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.
John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them?
Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :
X | -1 | 0 | 1 |
P(X = x) | -0.2 | 1 | 0.2 |
The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-
(a) No defects
(b) At least one defect
[Use e-1 = 0.3678]
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Find the probability that the visitor obtains the answer yes from at least 3 students.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Determine the value of k.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Determine P(X ≤ 2) and P(X > 2)
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.
Find the mean of number randomly selected from 1 to 15.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.