मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Verify Whether the Following Function Can Be Regarded as Probability Mass Function (P.M.F.) for the Given Values of X : X -1 0 1 P(X = X) -0.2 1 0.2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X : 

X -1 0 1
P(X = x) -0.2 1 0.2
बेरीज

उत्तर

Here P(X = -1) = - 0.2 

i.e. P(X = x) < 0, for x = -1 

∴ The function is not a p.m.f. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्‍न

From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.


A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).


A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.


The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )


A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


The probability distribution of a discrete random variable X is given below:

X 2 3 4 5
P(X) `5/"k"` `7/"k"` `9/"k"` `11/"k"`

The value of k is ______.


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.


Find the mean of number randomly selected from 1 to 15.


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×