Advertisements
Advertisements
प्रश्न
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to ______.
पर्याय
0
– 1
– 2
– 1.8
उत्तर
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to – 1.8.
Explanation:
We know that
E(X) = `sum_("i" = 1)^"n" "X"_"i""P"_"i"`
= (– 4)(0.1) + (– 3)(0.2) + (– 2)(0.3) + (– 1)(0.2) + 0(0.2)
= – 0.4 – 0.6 – 0.6 – 0.2
= – 1.8
APPEARS IN
संबंधित प्रश्न
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: c
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (1 < X ≤ 2)
Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.
An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.
Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success.
Find the mean and standard deviation of each of the following probability distribution :
xi : | -3 | -1 | 0 | 1 | 3 |
pi : | 0.05 | 0.45 | 0.20 | 0.25 | 0.05 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.
Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is
Let X be a random variable which assumes values x1 , x2, x3 , x4 such that 2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.
Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following:
Age x | 0 | 1 | 2 |
lx | 1000 | 880 | 876 |
Tx | - | - | 3323 |
Verify the following function, which can be regarded as p.m.f. for the given values of X :
X = x | -1 | 0 | 1 |
P(x) | -0.2 | 1 | 0.2 |
Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0); 0 < x < 1(otherwise)
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.4 | 0.4 | 0.2 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
y | –1 | 0 | 1 |
P(y) | 0.6 | 0.1 | 0.2 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows 3 heads
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Find the probability that the visitor obtains the answer yes from at least 3 students.
Solve the following problem :
It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on exactly 3 days of a week.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.