Advertisements
Advertisements
प्रश्न
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to ______.
विकल्प
0
– 1
– 2
– 1.8
उत्तर
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to – 1.8.
Explanation:
We know that
E(X) =
= (– 4)(0.1) + (– 3)(0.2) + (– 2)(0.3) + (– 1)(0.2) + 0(0.2)
= – 0.4 – 0.6 – 0.6 – 0.2
= – 1.8
APPEARS IN
संबंधित प्रश्न
A random variable X has the following probability distribution:
then E(X)=....................
Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Z | 3 | 2 | 1 | 0 | -1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)
X : | 3 | 2 | 1 | 0 | −1 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
X : | 0 | 1 | 2 |
P (X) : | 0.6 | 0.4 | 0.2 |
(iii)
X : | 0 | 1 | 2 | 3 | 4 |
P (X) : | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 |
(iv)
X : | 0 | 1 | 2 | 3 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 |
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
Find the mean and standard deviation of each of the following probability distribution :
xi: | 0 | 1 | 3 | 5 |
pi : | 0.2 | 0.5 | 0.2 | 0.1 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -2 | -1 | 0 | 1 | 2 |
pi : | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -3 | -1 | 0 | 1 | 3 |
pi : | 0.05 | 0.45 | 0.20 | 0.25 | 0.05 |
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.
A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
If X ∼ N (4,25), then find P(x ≤ 4)
A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -
(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
Determine whether each of the following is a probability distribution. Give reasons for your answer.
y | –1 | 0 | 1 |
P(y) | 0.6 | 0.1 | 0.2 |
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect
Let the p.m.f. of a random variable X be P(x) =
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | – 10 |
P(X) |
Then E(X) is equal to ______.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Variance of X.
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) |
Y | 0 | 1 | 2 | 3 |
P(Y) |
Prove that E(Y2) = 2E(X).
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) |
Calculate: Variance of X