हिंदी

Determine whether each of the following is a probability distribution. Give reasons for your answer. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2
योग

उत्तर

Here, pi > 0, `AA` i = 1, 2, 3
Now Consider,
\[\sum\limits_{i=1}^{3} \text{P}_i\] = 0.6 + 0.1 + 0.2 = 0.9 ≠ 1
∴ Given distribution is not a probability distribution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Exercise 8.1 [पृष्ठ १४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Exercise 8.1 | Q 3.(v) | पृष्ठ १४१

संबंधित प्रश्न

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


Find the probability distribution of number of tails in the simultaneous tosses of three coins.


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.


For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:

X: 2 3 4 5
P(X):
 

\[\frac{5}{k}\]
 

\[\frac{7}{k}\]
 

\[\frac{9}{k}\]


\[\frac{11}{k}\]


The value of k is .


Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is                

 

 


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3. 


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.


There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:

  1. no defect
  2. at least one defect
    Use e−1 = 0.3678

Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on exactly 3 days of a week.


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Variance of X.


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


A primary school teacher wants to teach the concept of 'larger number' to the students of Class II. 

To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.

All the outcomes of this activity are tabulated in the form of ordered pairs given below:

  2 3 4 5
2 (2, 2) (2, 3) (2, 4)  
3 (3, 2) (3, 3)   (3, 5)
4 (4, 2)   (4, 4) (4, 5)
5   (5, 3) (5, 4) (5, 5)
  1. Complete the table given above.
  2. Find the total number of ordered pairs having one larger number.
  3. Let the random variable X denote the larger of two numbers in the ordered pair.
    Now, complete the probability distribution table for X given below.
    X 3 4 5
    P(X = x)      
  4. Find the value of P(X < 5)
  5. Calculate the expected value of the probability distribution.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×