Advertisements
Advertisements
प्रश्न
The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
where k is a constant. Calculate E(3X2)
उत्तर
Given that: P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
∴ Probability distribution of random variable X is
X | 1 | 2 | 3 | 4 | 5 | 6 | otherwise |
P(X) | k | 4k | 9k | 8k | 10k | 12k | 0 |
We know that `sum_("i" = 1)^"n" "P"("X"_"i")` = 1
∴ k + 4k + 9k + 8k + 10k + 12k = 1
⇒ 44k = 1
⇒ k = `1/44`
E(3X2) = 3[k + 4 × 4k + 9 × 9k + 16 × 8k + 25 × 10k + 36 × 12k]
= 3[k + 16k + 81k + 128k + 250k + 432k]
= 3[908k]
= `3 xx 908 xx 1/44`
= `2724/44`
= 61.9 ......(Approx)
APPEARS IN
संबंधित प्रश्न
From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -
(a) exactly 1 defective bulb.
(b) at least 1 defective bulb.
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | -0.1 | 0.3 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Z | 3 | 2 | 1 | 0 | -1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.
Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:
X: | 2 | 3 | 4 | 5 |
P(X): |
\[\frac{5}{k}\]
|
\[\frac{7}{k}\]
|
\[\frac{9}{k}\]
|
\[\frac{11}{k}\] |
The value of k is .
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period.
Test scores (X) | 16 | 22 | 28 | 24 | 29 | 25 | 16 | 23 | 24 |
Sales (Y) (₹ in hundreds) | 35 | 42 | 57 | 40 | 54 | 51 | 34 | 47 | 45 |
(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17.
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
If X ∼ N (4,25), then find P(x ≤ 4)
Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
A random variable X has the following probability distribution :
x = x | 0 | 1 | 2 | 3 | 7 | |||
P(X=x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine (i) k
(ii) P(X> 6)
(iii) P(0<X<3).
Solve the following problem :
Following is the probability distribution of a r.v.X.
x | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is even.
Solve the following problem :
It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.
Find the mean and variance of the number randomly selected from 1 to 15
Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.