हिंदी

The probability distribution of a random variable x is given as under:P(X = x) = kfor,,kfor,,otherwise{kx2 for x=1,2,32kx for x=4,5,60 otherwisewhere k is a constant. Calculate P(X ≥ 4) - Mathematics

Advertisements
Advertisements

प्रश्न

The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)

सारिणी
योग

उत्तर

Given that: P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`

∴ Probability distribution of random variable X is

X 1 2 3 4 5 6 otherwise
P(X) k 4k 9k 8k 10k 12k 0

We know that `sum_("i" = 1)^"n" "P"("X"_"i")` = 1

∴ k + 4k + 9k + 8k + 10k + 12k = 1

⇒ 44k = 1

⇒ k = `1/44`

P(X ≥ 4) = P(X = 4) + P(X = 5) + P(X = 6)

= 8k + 10k + 12k = 30k

= `30 xx 1/44`

= `15/22`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 51.(iii) | पृष्ठ २७८

संबंधित प्रश्न

Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.


If the probability distribution of a random variable X is given by Write the value of k.

X = xi : 1 2 3 4
P (X = xi) : 2k 4k 3k k

 


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

A random variable has the following probability distribution:

X = xi : 0 1 2 3 4 5 6 7
P (X = xi) : 0 2 p 2 p  3 p  p2 p2 p2 2 p 

The value of p is


Find the probability distribution of the number of doublets in three throws of a pair of dice and find its mean.


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Find the mean and variance of the number randomly selected from 1 to 15


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Determine the mean of the distribution.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×