हिंदी

Find the Mean of the Following Probability Distribution:X= Xi:123p(X= Xi) :\[\Frac{1}{4}\]\[\Frac{1}{8}\]\[\Frac{5}{8}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 

योग

उत्तर

xi pi pixi
1
 

\[\frac{1}{4}\]
 

\[\frac{1}{4}\]
2
 

\[\frac{1}{8}\]
 

\[\frac{2}{8}\]
3
 

\[\frac{5}{8}\]
 

\[\frac{15}{8}\]

Mean = \[\sum\nolimits_{}^{}\] pixi = \[\frac{1}{4} + \frac{2}{8} + \frac{15}{8} = \frac{2 + 2 + 15}{8} = \frac{19}{8}\]

 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Mean and Variance of a Random Variable - Very Short Answers [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 32 Mean and Variance of a Random Variable
Very Short Answers | Q 5 | पृष्ठ ४५

संबंधित प्रश्न

From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -

(a) exactly 1 defective bulb.

(b) at least 1 defective bulb.


State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

Find the probability distribution of number of tails in the simultaneous tosses of three coins.


From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Verify the following function, which can be regarded as p.m.f. for the given values of X : 

X = x -1 0 1
P(x) -0.2 1 0.2

Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-

(a) No defects
(b) At least one defect 
[Use e-1 = 0.3678]


Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is non-negative


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Find the mean and variance of the number randomly selected from 1 to 15


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Determine the mean of the distribution.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine P(X ≤ 2) and P(X > 2)


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: The value of A if E(X) = 2.94


The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: Variance of X


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×