हिंदी

The probability distribution of a discrete random variable X is given as under: X 1 2 4 2A 3A 5A P(X) 12 15 325 110 125 125 Calculate: The value of A if E(X) = 2.94 - Mathematics

Advertisements
Advertisements

प्रश्न

The probability distribution of a discrete random variable X is given as under:

X 1 2 4 2A 3A 5A
P(X) `1/2` `1/5` `3/25` `1/10` `1/25` `1/25`

Calculate: The value of A if E(X) = 2.94

योग

उत्तर

We know that: E(X) = `sum_("i" = 1)^"n" "P"_"i""X"_"i"`

∴ E(X) = `1 xx 1/2 + 2 xx 1/5 + 4 xx 3/25 + 2"A" xx 1/10 + 3"A" xx 1/25 + 5"A" xx 1/25`

2.94 = `1/2 + 2/5 + 12/25 + "A"/5 + (3"A")/25 + "A"/5`

⇒ 2.94 = `0.5 + 0.4 + 0.48 + (13"A")/25 = 1.38 + (13'A")/25`

⇒ 2.94 – 1.38 = `(13"A")/25`

⇒ 1.56 = `(13"A")/25`

⇒ A = `(1.56 xx 25)/13` = 0.12 × 25

∴ A = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise [पृष्ठ २७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Exercise | Q 50.(i) | पृष्ठ २७८

संबंधित प्रश्न

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine P(X ≤ 2) and P(X > 2) .


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.


For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

If the probability distribution of a random variable X is given by Write the value of k.

X = xi : 1 2 3 4
P (X = xi) : 2k 4k 3k k

 


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.


Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:

  1. no defect
  2. at least one defect
    Use e−1 = 0.3678

Solve the following problem :

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is positive.


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.


A random variable X has the following probability distribution

X 2 3 4
P(x) 0.3 0.4 0.3

Then the variance of this distribution is


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×