हिंदी

The Expenditure Ec of a Person with Income I is Given by Ec = (O. 000035) I2 + (0. 045) I - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.

एक शब्द/वाक्यांश उत्तर
योग

उत्तर

E= (0.000035) I2 + (0. 045) I

`"MPC" = ("dE"_"c")/("dI")`

= 2(0.000035) I + 0.045

For I = 5000,

MPC = 2(0.000035)5000 + 0.045

∴ MPC = 0.35 + 0.045

⇒ MPC = 0.395

APC = `("E"_"c")/"I"`

∴ APC = (0.000035) I + 0.045

For I = 5000,

APC = (0.000035)(5000) + 0.045

⇒ APC = 0.22

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्न

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


Find the probability distribution of the number of heads, when three coins are tossed. 


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.


Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?


From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


Find the mean and standard deviation of each of the following probability distribution :

xi :  0 1 2 3 4 5
pi : 
\[\frac{1}{6}\]
\[\frac{5}{18}\]
\[\frac{2}{9}\]
\[\frac{1}{6}\]
\[\frac{1}{9}\]
\[\frac{1}{18}\]

Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

If the probability distribution of a random variable X is given by Write the value of k.

X = xi : 1 2 3 4
P (X = xi) : 2k 4k 3k k

 


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:

X: 2 3 4 5
P(X):
 

\[\frac{5}{k}\]
 

\[\frac{7}{k}\]
 

\[\frac{9}{k}\]


\[\frac{11}{k}\]


The value of k is .


Verify the following function, which can be regarded as p.m.f. for the given values of X : 

X = x -1 0 1
P(x) -0.2 1 0.2

Compute the age specific death rate for the following data : 

Age group (years) Population (in thousands) Number of deaths
Below 5  15 360
5-30  20 400
Above 30  10 280

A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


If X ∼ N (4,25), then find P(x ≤ 4)


Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on exactly 3 days of a week.


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate Standard deviation of X.


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×