Advertisements
Advertisements
प्रश्न
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
उत्तर
Age group (years) | Population (in thousands) | Number of deaths | Age SDR = `D_i/p_i xx 1000` |
Below 5 | 15 | 360 | 24 |
5-30 | 20 | 400 | 20 |
Above 30 | 10 | 280 | 28 |
APPEARS IN
संबंधित प्रश्न
A random variable X has the following probability distribution:
then E(X)=....................
Find the probability distribution of number of heads in two tosses of a coin.
There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
Find the probability distribution of the number of heads, when three coins are tossed.
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?
Find the mean and standard deviation of each of the following probability distributions:
xi : | 2 | 3 | 4 |
pi : | 0.2 | 0.5 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -5 | -4 | 1 | 2 |
pi : | \[\frac{1}{4}\] | \[\frac{1}{8}\] | \[\frac{1}{2}\] | \[\frac{1}{8}\] |
Find the mean and standard deviation of each of the following probability distribution :
xi : | 0 | 1 | 2 | 3 | 4 | 5 |
pi : |
\[\frac{1}{6}\]
|
\[\frac{5}{18}\]
|
\[\frac{2}{9}\]
|
\[\frac{1}{6}\]
|
\[\frac{1}{9}\]
|
\[\frac{1}{18}\]
|
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Mark the correct alternative in the following question:
For the following probability distribution:
X : | 1 | 2 | 3 | 4 |
P(X) : |
\[\frac{1}{10}\]
|
\[\frac{1}{5}\]
|
\[\frac{3}{10}\]
|
\[\frac{2}{5}\]
|
The value of E(X2) is
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
If p : It is a day time , q : It is warm
Give the verbal statements for the following symbolic statements :
(a) p ∧ ∼ q (b) p v q (c) p ↔ q
If X ∼ N (4,25), then find P(x ≤ 4)
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 | 3 | 4 |
P(x) | 0.1 | 0.5 | 0.2 | –0.1 | 0.3 |
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.
There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: The value of A if E(X) = 2.94
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
The probability distribution of a discrete random variable X is given below:
X | 2 | 3 | 4 | 5 |
P(X) | `5/"k"` | `7/"k"` | `9/"k"` | `11/"k"` |
The value of k is ______.
For the following probability distribution:
X | – 4 | – 3 | – 2 | – 1 | 0 |
P(X) | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
E(X) is equal to ______.
Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.