Advertisements
Advertisements
प्रश्न
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
उत्तर
Let X denote the number of bad eggs in a sample of 3 eggs drawn from a lot containing 2 bad eggs and 10 good eggs. Then, X can take the values 0, 1 and 2.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no bad egg } \right)\]
\[ = \frac{{}^{10} C_3}{{}^{12} C_3}\]
\[ = \frac{120}{220}\]
\[ = \frac{12}{11}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ bad egg } \right)\]
\[ = \frac{{}^2 C_1 \times^{10} C_2}{{}^{12} C_3}\]
\[ = \frac{90}{220}\]
\[ = \frac{9}{22}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ bad eggs } \right)\]
\[ = \frac{{}^2 C_2 \times^{10} C_1}{{}^{12} C_3}\]
\[ = \frac{10}{220}\]
\[ = \frac{1}{22}\]
Thus, the probability distribution of X is given by
x | P(X) |
0 |
\[\frac{12}{11}\]
|
1 |
\[\frac{9}{22}\]
|
2 |
\[\frac{1}{22}\]
|
Computation of mean
xi | pi | pixi |
0 |
\[\frac{12}{11}\]
|
0 |
1 |
\[\frac{9}{22}\]
|
\[\frac{9}{22}\]
|
2 |
\[\frac{1}{22}\]
|
\[\frac{1}{11}\]
|
`∑`pixi =\[\frac{1}{2}\]
|
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
The random variable X has probability distribution P(X) of the following form, where k is some number:
`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`
- Determine the value of 'k'.
- Find P(X < 2), P(X ≥ 2), P(X ≤ 2).
An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ‘X’ mark.
(ii) not more than 2 will bear ‘Y’ mark.
(iii) at least one ball will bear ‘Y’ mark
(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.
Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.
Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success.
Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Find the value of k.
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
A random variable has the following probability distribution:
X = xi : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P (X = xi) : | 0 | 2 p | 2 p | 3 p | p2 | 2 p2 | 7 p2 | 2 p |
The value of p is
Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution.
Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-
(a) No defects
(b) At least one defect
[Use e-1 = 0.3678]
Determine whether each of the following is a probability distribution. Give reasons for your answer.
y | –1 | 0 | 1 |
P(y) | 0.6 | 0.1 | 0.2 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
Following is the probability distribution of a r.v.X.
x | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is non-negative
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Find the probability that the visitor obtains the answer yes from at least 3 students.
Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Find the value of k
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
Prove that E(Y2) = 2E(X).
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
For the following probability distribution:
X | 1 | 2 | 3 | 4 |
P(X) | `1/10` | `3/10` | `3/10` | `2/5` |
E(X2) is equal to ______.
If the p.m.f of a r. v. X is
P(x) = `c/x^3`, for x = 1, 2, 3
= 0, otherwise
then E(X) = ______.