हिंदी

Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X. - Mathematics

Advertisements
Advertisements

प्रश्न

Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.

सारिणी
योग

उत्तर

Since 4 balls have to be drawn, therefore, X can take the values 0, 1, 2, 3, 4.

P(X = 0) = P(no red ball) = P(4 white balls)

= `(""^4"C"_4)/(""^12"C"_4) = 1/495`

P(X = 1) = P(1 red ball and 3 white balls)

= `(""^8"C"_1 xx ""^4"C"_3)/(""^12"C"_4) = 32/495`

P(X = 2) = P(2 red balls and 2 white balls)

= `(""^8"C"_2 xx ""^4"C"_2)/(""^12"C"_4) = 168/495`

P(X = 3) = P(3 red balls and 1 white ball)

= `(""^8"C"_3 xx ""^4"C"_1)/(""^12"C"_4) = 224/495`

P(X = 4) = P(4 red balls) 

= `(""^8"C"_4)/(""^12"C"_4) = 70/495` 

Thus the following is the required probability distribution of X

X 0 1 2 3 4
P(X) `1/495` `32/495` `168/195` `224/495` `70/495`
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Solved Examples [पृष्ठ २६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 13 Probability
Solved Examples | Q 9 | पृष्ठ २६६

संबंधित प्रश्न

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X : 

X -1 0 1
P(X = x) -0.2 1 0.2

Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.


A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


A random variable X has the following probability distribution

X 2 3 4
P(x) 0.3 0.4 0.3

Then the variance of this distribution is


Find the probability distribution of the number of doublets in three throws of a pair of dice


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×