Advertisements
Advertisements
प्रश्न
A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.
उत्तर
Let X denote the number of red balls in a sample of 3 balls drawn from a bag containing 4 red and 6 black balls. Then, X can take the values 0, 1, 2 and 3.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no red ball } \right)\]
\[ = \frac{{}^6 C_3}{{}^{10} C_3}\]
\[ = \frac{20}{120}\]
\[ = \frac{1}{6}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ red ball } \right)\]
\[ = \frac{{}^4 C_1 \times^6 C_2}{{}^{10} C_3}\]
\[ = \frac{60}{120}\]
\[ = \frac{1}{2}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ red balls } \right)\]
\[ = \frac{{}^4 C_2 \times^6 C_1}{{}^{10} C_3}\]
\[ = \frac{36}{120}\]
\[ = \frac{3}{10}\]
\[P\left( X = 3 \right)\]
\[ = P\left( 3 \text { red balls } \right)\]
\[ = \frac{{}^4 C_3}{{}^{10} C_3}\]
\[ = \frac{4}{120}\]
\[ = \frac{1}{30}\]
Thus, the probability distribution of X is given by
x | P(X) |
0 |
\[\frac{1}{6}\]
|
1 |
\[\frac{1}{2}\]
|
2 |
\[\frac{3}{10}\]
|
3 |
\[\frac{1}{30}\]
|
APPEARS IN
संबंधित प्रश्न
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | -0.1 | 0.3 |
Find the probability distribution of number of heads in two tosses of a coin.
The random variable X has probability distribution P(X) of the following form, where k is some number:
`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`
- Determine the value of 'k'.
- Find P(X < 2), P(X ≥ 2), P(X ≤ 2).
If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]
Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:
1) Exactly two persons hit the target.
2) At least two persons hit the target.
3) None hit the target.
A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
For what value of k the following distribution is a probability distribution?
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | 2k4 | 3k2 − 5k3 | 2k − 3k2 | 3k − 1 |
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
Mark the correct alternative in the following question:
For the following probability distribution:
X : | 1 | 2 | 3 | 4 |
P(X) : |
\[\frac{1}{10}\]
|
\[\frac{1}{5}\]
|
\[\frac{3}{10}\]
|
\[\frac{2}{5}\]
|
The value of E(X2) is
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
If p : It is a day time , q : It is warm
Give the verbal statements for the following symbolic statements :
(a) p ∧ ∼ q (b) p v q (c) p ↔ q
Solve the following:
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.3 | 0.4 | 0.2 |
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | – 10 |
P(X) | `1/5` | `3/10` | `1/2` |
Then E(X) is equal to ______.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Calculate `"V"("X"/2)`
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
The probability distribution of a discrete random variable X is given below:
X | 2 | 3 | 4 | 5 |
P(X) | `5/"k"` | `7/"k"` | `9/"k"` | `11/"k"` |
The value of k is ______.
A random variable x has to following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.
Solution: Here, n = 5, X =number of bombs that hit the target
p = probability that bomb will hit the target = `square`
∴ q = 1 - p = `square`
Here, `X∼B(5,4/5)`
∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`
P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]
= P(X = 3)
=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`
∴ P(X = 3) = `square`